com.redhat.et.silex.sample.iid.rdd

IIDFeatureSamplingMethodsRDD

class IIDFeatureSamplingMethodsRDD extends IIDFeatureSamplingMethods with Logging

Implementation-specific subclass of IIDFeatureSamplingMethods for RDDs

Linear Supertypes
Logging, IIDFeatureSamplingMethods, Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. IIDFeatureSamplingMethodsRDD
  2. Logging
  3. IIDFeatureSamplingMethods
  4. Serializable
  5. Serializable
  6. AnyRef
  7. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new IIDFeatureSamplingMethodsRDD(data: RDD[Seq[Double]])

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  12. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  13. def iidFeatureSeqRDD(n: Int, iSS: Int = 10000, oSS: Int = 10000): RDD[FeatureSeq]

    Generate a new synthetic RDD whose rows are iid sampled from input feature vectors

    Generate a new synthetic RDD whose rows are iid sampled from input feature vectors

    n

    The number of iid samples to generate.

    iSS

    The input sample size. Input is periodically sampled and the sample is used to generate iid output data. Defaults to 10000.

    oSS

    The output sample size. Each input sample is used to generate this number of output samples. Defaults to 10000.

    returns

    An RDD of FeatureSeq where each 'column' in the feature sequence is statistically independent of the others, but shares the marginal distribution of the corresponding input column.

    Definition Classes
    IIDFeatureSamplingMethodsRDDIIDFeatureSamplingMethods
  14. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  15. def logDebug(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  16. def logError(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  17. def logInfo(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  18. def logWarning(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  19. def logger: Logger

    Definition Classes
    Logging
  20. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  21. final def notify(): Unit

    Definition Classes
    AnyRef
  22. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  23. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  24. def toString(): String

    Definition Classes
    AnyRef → Any
  25. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  26. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  27. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Logging

Inherited from IIDFeatureSamplingMethods

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped